Rainwater harvesting from roads enhanced indigenous pasture establishment in a typical African dryland environment

Mganga KZ1, Amollo KO1, Bosma L2, Kioko T2, Kadenyi N2, Musyoki G1, Ndathi AJN1, Wambua S1, van Steenbergen F2, Musimba NKR1

1 Department of Agricultural Sciences, South Eastern Kenya University, Kenya; 2 MetaMeta Research, Poststraat 2, 5211 EA’s Hertogenbosch, The Netherlands

Introduction

- African drylands cover approximately 41% of sub-Saharan Africa landmass and about one-third of the global drylands (Vohland and Barry, 2009).
- Free ranging livestock production system in rangelands is a key source of livelihood in African dryland environments.
- Increased pressure on forage resources, climate variability and change has contributed to shrinkage of feed resource base, thus threatening livelihoods.
- Combining in-situ rainwater harvesting and indigenous grass reseeding can restore denuded pastures in African drylands.
- Reseeding plays a pivotal role in detached dryland landscapes (via seed dispersal or seed banks) (Sheley et al., 2006)
- In-situ rainwater harvesting ensures sufficient capture of water and prolongs soil moisture availability for seed germination and subsequent establishment

Objective

To determine the potential of rainwater harvesting from roads and diverting the generated runoff into established trenches for enhanced pasture production and rehabilitation of degraded African dryland landscape

Study Site and Methods

- **Location** – Kitui County, southeastern Kenya (map below).
- **Climate** – Annual average rainfall 300-800 mm, mean annual temperatures 14-34 °C (Schmitt et al. 2019).
- **Soils** – Cambisols. pH 6.62; NH4+ 1.33 µg g soil; NO3- 0.6 µg g soil; Carbon 0.58 %; Nitrogen 0.05 %; C:N ratio 10.90

![Project site layout](image)

Figure 1: Project site layout
- EM – Enteropogon macrostachyus
- CC – Cenchrus ciliaris
- EM – Eragrostis superba

![Study location](image)

Figure 2: Study location

![Rainfall pattern](image)

Figure 3: Rainfall pattern during the project period

Results

- **Study site and Methods**
 - **Location** – Kitui County, southeastern Kenya (map below).
 - **Climate** – Annual average rainfall 300-800 mm, mean annual temperatures 14-34 °C (Schmitt et al. 2019).
 - **Soils** – Cambisols. pH 6.62; NH4+ 1.33 µg g soil; NO3- 0.6 µg g soil; Carbon 0.58 %; Nitrogen 0.05 %; C:N ratio 10.90

Conclusions

- Rainwater harvesting strategies – diverting runoff from roads and collection in trenches enhances and prolongs soil moisture availability.
- *Eragrostis superba* displayed the best response to road water harvesting exemplified by higher biomass yields.
- Combining indigenous grass reseeding and road rainwater harvesting is an innovative strategy to enhance pasture production in African dryland environments.