

Food & Business Knowledge Platform Stakeholder Workshop: Micronutrient management for improving harvests, farmers' incomes, human nutrition, and the environment, Utrecht, 05 Anil 2016

Outline

- The Context
- ISFM Concept
- Soil fertility & micronutrient deficiency nexus
 Case Study – NE Zimbabwe
- Fertilizer fortification
 Case Study SSA Lit Review
- Future research and development priorities

The context of soil and human micronutrient deficiencies

- Agriculture is closely linked to human nutrition and health in developing countries
- Biofortification technologies effective in improving human nutrition
 - Genetic biofortification
 - Focus mainly on Fe, Zn and vitamin A
 - Challenges of stability, density, yield penalty, public acceptance, and regulation of transgenic crops
 - Agronomic biofortification
 - Micronutrient fertilization
 - Most effective for Zn, Se and I
 - Crop diversification

The context of soil and human micronutrient deficiencies

RPP

 Impact of crop production intensification on human nutrition in developing countries

The context of soil and human micronutrient deficiencies in SSA

- Current fertilizer recommendations mainly cover N and P
- Soil micronutrient deficiencies are part of a set of interrelated biophysical and agronomic factors underlying low crop productivity
- Smallholder farming systems are highly heterogeneous
- Cereal crops dominate cropping systems and contribute largest proportion of dietary micronutrients
- Soil and crop micronutrient linked to human micronutrient deficiencies

Soil fertility & micronutrient deficiency nexus

Influence of soil fertility management on Zn deficiency and grain Zn content on granitic sands in Zimbabwe

Manzaka et al. 2012

Farmer management practice	OR Zn content (mg/kg)	Soil avail. Zn (mg/kg)	Maize yield (t/ha)	Maize grain Zn (mg/kg)
Unfertilized maize	-	0.7	0.4	14
Maize after legume		2.1	1.2	19
Mineral NPK only	-	0.9	1.7	16
Leaf litter + NPK	86.0	2.4	1.8	23
Manure + NPK	22.5	1.5	2.1	21

- Farmer management practices affect soil Zn, maize yields and Zn content
- Unfertilized maize → low yields and low soil and grain Zn contents
- Sole application of macronutrient fertilizers increased yields but have insignificant effects of grain Zn content
- Integrated application of organic resources and fertilizer increased yields and Zn content

Soil fertility & micronutrient deficiency nexus Organic resources are an essential component of soil fertility management and micronutrient supply Limited quantities are available (<25% of croplands receive substantial amounts of manure) Quality low and variable High labour demands Micronutrient fortification through fertilizers is a necessary strategy NPK fertilizer in Zimbabwe were required to contain min. 0.5% Zn by law, but no longer enforced.

Concluding remarks

- Micronutrient intake in smallholder farming systems strongly related to soil fertility and soil fertility management
- Micronutrient responses not only limited to poor soils, but evident across wide yield ranges
- Efforts to increase fertilizer without addressing micronutrient deficiencies will exacerbate human micronutrient deficiencies
- Focus on yield response as a basis for fertilizer recommendation obscure the importance of yield quality
- Integrated agronomic solutions are required to address the challenge of low productivity and low nutritional values of crops:

- Crop varieties
- Crop diversification
- Organic resources
- Appropriate fertilizer formulas and management practices

